|
|
|
超声波流量计 |
|
|
超声波流量计的应用与故障处理 [43]
超声波流量计的应用与故障处理
摘要:本文介绍了超声波流量计的原理、有效应用及其故障处理。具有一定的知识传播与信息沟通价值。
关键词:超声波 流量计 传感器(探头) 故障处理
一、超声波流量计的测量原理
超声波流量计是一种非接触式流量计。工作原理是:超声波在流体中传播时其传播速度要受到流体流速的影响,通过测量超声波在流体中传播速度可以检测出流体的流速而换算出流量来。以使用最广泛的时差法超声波流量计为例,当超声波在流体中传播时顺流方向超声波的传播速度会增大、逆流方向则减小,即同一传播距离就有不同的传播时间,再利用传播速度之差与被测流体流速之关系求取流速而换算出流量。即当超声波束在管道内水介质流动方向上的“上游传感器”与“下流传感器”之间传播时,水的流动会使超声波束的传播时间相对于静态传播产生一个微小变化,并且这个传播时间的变化与水的流速成正比,这就是时差式超声波流量计的测量原理。其关系的理论表达式如下式: V=MD/sin2θ × △T/TupTdown
式中,M—为超声波束在水中的直线传播次数
θ—为超声波束与水流动方向的夹角
Tup—为超声波束在正方向上的传播时间(由上游传感器到下游传感器间的传播时间)
Tdown—为超声波束在逆方向上的传播时间(由下游传感器到上游传感器间的传播时间)
△T= Tup—Tdown
二、超声波流量计的特点
超声波流量计基于微处理技术,大多采用集成电路及低电压宽脉冲发射技术而设计的。在测量技术上,为取得更高的分辨率和更大的测量范围,多使用0.1ns超高分辨率时间测量线路。它专门用于液体介质测量特别是水的测量。其显著特点是:精度等级为±1.0%,可在不停产状态下带压安装,主机既可安装于值控室还可输出电流、脉冲等标准信号并可利用RS232或RS485接口通讯进行计量数据远程传送。该流量计具有高可靠性、低功耗、抗干扰、安装维护方便等优点。
三、超声波流量计的基本构造与主要安装方式
1、超声波流量计的构造
超声波流量计一般可分现场传感器(即探头),传输电缆,显示主机三大部分。其传感器有外夹式、插入式、法蓝式(即管段式),显示主机分固定式、便携式,而便携式主机可配备外夹式传感器对固定在线运行的超声波流量计进行比对(现场校准)且安装十分简便。
2、超声波流量计测量点的确定
超声波流量计需先选取一个适宜的测量点,然后把测量点的水管参数输入流量计中,最后将传感器(即探头)安装在水管上。
⑴测量点的一般要求
超声波流量计的测量点要求需在一定长度的直管段上,即选择水流分布均匀的管段,以减少测量误差。
⑵测量点的选取原则
⑴测量点宜选择距上游(水流来方向)10倍管径长度、距下游(水流去方向)5倍管径长度的均匀直管段(即上、下游阀门在该长度以外,或水管的拐点在该长度之外)。
⑵该直管段的材质要均匀无疤、裂痕以利于超声波传输。
⑶该直管段的内壁应无水垢(若略有水垢有条件时可用蒸汽或高压水吹扫)。
⑷该直管段要充满水(无论垂直或水平管段)。⑸⑹
2、超声波流量计传感器的分类及主要安装方式
超声波流量计传感器的安装质量直接关乎水流量测量的准确性、可信度和运行可靠性。
⑴超声波流量计传感器(探头)的分类
常用的超声波流量计传感器按安装方式有如下三种
外夹式传感器—安装时需将管外壁的拟安装位置打磨光滑后用耦合剂将传感器(探头)贴于管外壁再用专用夹紧装置固定。该方式能方便地在管外进行水流量测量,也适合便携式。缺点是易因耦合剂的处置不当引起信号接收状态恶变而影响测量的稳定性。
插入式传感器—安装时用钻孔工具在不停产状态下将传感器(探头)插入管路中。优点是能在水管内壁结垢或水中带气情况下实现稳定可靠的测量。
管段式传感器—安装时需要切开选定的直管段,采用法蓝联接。产品已经过专门出厂标定,好处是传感器可以不停产进行维修,特点是测量准确度高。
⑵超声波流量计传感器(探头)的安装
超声波流量计传感器(探头)的安装位置一般选择两个传感器(探头)管轴在输水管道的管轴水平方向上或与管轴水平面成45度夹角。
超声波流量计传感器(探头)的安装方式有Z、V、N、W方式。其中N、W方式适用于管径为50mm以下的输水管道,因使用难度和性价比较高而很少应用。常用方式有两种:
a、“V”方式安装
“V”式安装是标准的安装方法,可测管径范围为25mm—400mm。安装传感器(探头)时须注意上下游两传感器(探头)水平对齐,使其中心连线与输水管道轴线水平一致。(示意图见说明书)
b、“Z”方式安装
“Z”式安装一般适用于输水管道粗或水介质不很洁净或管道内壁有水垢而使“V”式安装信号失真状况。一般说来,300mm以上管径的输水管道选用“Z”式安装较适宜,“Z”式安装的可测管径范围通常在100mm—600mm。安装传感器(探头)时须注意上下游两传感器(探头)与输水管道轴线在同一平面内,且上游传感器(探头)在低位、上游传感器(探头)在高位。(示意图见说明书)
⑶超声波流量计传感器探头的安装检查
a、主要检查传感器(即探头)的安装位置是否适宜。
b、与水管外壁的结合是否光滑紧密。
c通过主机检查信号强度和信号质量,观察传感器是否能够接收到使主机正常工作的超声波信号。
3、超声波流量计的调试
⑴按流量计要求输入管道参数,并记录。
⑵对上下游传感器(即探头)的安装位置、间距、管道接合度进行调整,将上下游两个方向上接收的信号强度调整至最强(信号强度越大则测量值越稳定、可信度越大,越能长时可靠运行)。
四、超声波流量计计量数据的远传与共享
技术人员通常通过PC机或其他通信设备实现超声波流量计的通信,用适当的串行口电缆将超声波流量计的标准串行口与上位机串口联接起来,用软件在上位机上发出预先设置的命令,就可使流量计发出相关的应答信号。
技术人员使用超声波流量计的标识码作为网络地址码,使用相应命令集作为通信协议,使用流量计的电流环及其OCT输出来控制步进式(或模拟式)电磁阀的开度,继电器输出可控制其他设备的上下电,既可实现数据采集又可实现远程控制(数据的传送硬件在较近距离时使用RS232或RS485接口通讯,在较长距离时采用电流环或无线传输),通过以太网将流量计数据传入企业网实现公司内相关二级单位的数据共享。并实现了水计量的实时监控状态。
五、超声波流量计使用中的常见故障与处理
1、故障现象:瞬时流量计波动大。
⑴故障原因:信号强度波动大;本身测量流体波动大。
⑵处理对策:调整好探头位置,提高信号强度(保持在3%以上)保证信号强度稳 定,如本身流体波动大,则位置不好,重新选点,确保前10D后5D的工况要求。
2、故障现象:外夹式流量计信号低。
⑴故障原因:管径过大或管道结垢严重或安装方式不对。
⑵处理对策:对管径过大、结垢严重者采用插入式探头;重新选择安装方式。
3、故障现象:插入式探头使用一段时间后信号降低。
⑴故障原因:可能探头发生偏移或探头表面水垢厚。
⑵处理对策:重新调整探头位置,清冼探头发射面。
4、故障现象:开机无显示。
⑴故障原因:电源属性与仪表额定值不对应或保险丝烧断。
⑵处理对策:检查电源属性是否与仪表的额定值相对应,保险丝是否烧断。如以上问题无则通知厂家专业人员处理。
5、故障现象:开机后仪表仅有背光而无任何字符显示。
⑴故障原因:一般为程序芯片失。
⑵处理对策:通知厂家专业人员处理。
6、故障现象:仪表在现场强干扰下无法使用。
⑴故障原因:供电电源波动范围较大或周围有变频器或强磁场干扰或接地线不正确。
⑵处理对策:给仪表提供稳定的供电电源;或将仪表安装远离变频器和强磁场干扰;或规范设置接地线。
2.性能要求和仪表规范方向的考虑
2.1 总论
测量方法确定后选择仪表在性能要求上考虑的内容有:瞬时流量还是总量(累计流量)、精确度、重复性、线性度、流量范围和范围度、压力损失、输出信号特性和响应时间等。不同测量对象有各自测量目的,在仪表性能方面有其不同侧重点。例如商贸核算和储运对精确度要求较高;连续测量过程控制通常只要求良好的可靠性和重复性,有时还要求宽的范围度,而对测量精确度要求还放在次要地位;批量配比生产则希望有好的精确度。
2.2 测量流量还是总量使用对象测量的目的有两类,即测量流量和计量总量。管道连续配比生产或过程控制使用场所主要测量瞬时流量;灌装容器批量生产以及商贸核算、储运分配等使用场所大部分只要取得总量或辅以流量。两种不同功能要求,再选择测量方法上就有不同侧重点
有些仪表如容积式流量计、涡轮流量计等,测量原理上就以机械技术或脉冲频率输出,直接得到总量,因此具有较高精确度,适用于计量总量。 电磁流量计、超声流量计、节流式流量计等仪表原理上是以测量流体流速推导出流量,响应快,适用于过程控制,但装有积算功能环节后也可获得总量。涡街流量计具有上者优点,但其抗震、抗干扰性能差,不适用于过程控制而适用于计量总量。
2.3 精确度
整体的测量精确度要求多少?在某一特定流量下使用,还是在某一流量范围内使用?在什么测量范围内保持上述精确度?所选仪表的精确度能保持多久?是否易于重新校验?是否要(或能)现场在线核对仪表精确度?这些问题必须细致地考虑。 如不是单纯计量总量,而是应用在流量控制系统中,则检测仪表精确度的确定要在整个系统控制精确度要求下进行,因为整个系统不仅有流量检测的误差,还包含有信号传输、控制调节、操作执行等环节的误差和各种影响因素,如操作执行环节往往有2%左右的回差,对测量仪表确定过高的精确度(比如说0.5级)是不合理和不经济的。就流量仪表本身而言,检测元件(或传感器)和转换/显示仪表之间只精确度亦应适当确定,如未经实流标定均速管、楔形管、弯管等差压装置误差在1%-5%之间,选用高精度差压计与之相配也就没有意义了。 流量仪表规范所定的精确度等级是在某一较宽流量范围内适用,如果使用条件在某一特定流量或很狭窄的流量范围,例如用涡轮流量计计量油品桶装分发,只有在阀门全开情况下启用,流量基本恒定,或仅在很小范围内变化,此时使用的测量精确度可比规定值高。如能在此测量点专门标定,可提高精确度,比如说从0.5级提高到0.25级或更高。 用于商贸核算、储运和物料平衡要求较高精确度时,还应考虑精确度的持久性,是否易于重新校验等关键因素,以及是否有在线校验的可能性。
在比较各制造厂的仪表性能规范时,要注意误差的百分率是指引用误差(测量上限或量程的百分率,常用%F.S表示),还是相对误差(测量值的百分率,常用%R表示)。通常样本或使用说明书只示误差%,而未注明%F.S或%R,往往是指%F.S,因为过去流量仪表瞬时流量的误差%F.S为多,这是不够严谨的。如果能做到%R,为表示其性能优越,必定注明。 还要注意制造厂产品说明书所定精确度是指基本误差,在现场使用环境、动力、流体条件变化将产生附加误差。现场使用精确度应为基本误差与影响量产生的附加误差所合成,如影响量大,附加误差可能远远超过基本误差。
2.4 重复性
重复性在过程控制应用中是重要的指标,由仪器本身原理与制造质量所决定,而精确度除取决于重复性外,尚与量值标定系统有关。严格地说重复性是指环境条件、介质参量等不变情况下,对某一流量值段时间内同方向进行多次测量的一致性。然而实际应用中,仪表优良的重复性被许多因素包括流体粘度、密度等变化所干扰,然而这些变化因素还未到需要作专门检测修正的地步,这些影响往往被误认为仪表重复性不好。例如浮子流量计受流体密度影响,小口径仪表还受粘度影响;涡轮流量计用于高粘度范围时的粘度影响;有些未作修正处理的超声流量计流体温度对声速影响等。若仪表输出特性是非线性的,则这种影响更为突出。
2.5 线性度
流量仪表输出主要有线性和平方根非线性两种。大部分流量仪表的非线性误差不列出单独指标,而包含在基本误差内。然而对于宽流量范围脉冲输出用作总量积算的仪表,线性度是一个重要指标,使有可能在流量范围内用同一个仪表常数,线性度差就要降低仪表精确度。随着微处理器技术的发展,采用信号适配技术修正仪表系统非线性,从而提高仪表精确度和扩展流量范围。如需作管道流量配比、流量相加或热量计要对温度差和流量相乘时,应选择线性输出的仪表,可以简化计算过程。
2.6 上限流量和流量范围
上限流量也称满度流量。选择流量仪表的口径应按被测管道使用的流量范围和被选仪表的上限流量和下限流量来选配,而不是简单地按管道通径配用。虽然通常设计管道流体最大流速是按经济流速来确定的。因为流速选择过低,管径粗投资大;过高则输送功率大,增加运行费用。例如水等低粘度液体经济流速为1.5-3m/s,高粘度液体0.2-1m/s,大部分流量仪表上限流量的流速接近或略高于管道经济流速,因此仪表选择口径与管径相同的机会较多,安装就比较方便。如不相同也不会相差太多。 然而同一口径不同类型的仪表上限流量(也可以说上限流速)受各自工作原理和结构的约束,差别很大。以液体为例,上限流量的流速以玻璃管浮子流量计最低,在0.5-1.5m/s之间,容积式流量计在1.5-2.5m/s之间,涡街流量计较高在5.5-7m/s之间,电磁流量计则在1-7m/s(甚至0.5-10m/s)之间。 有些仪表流量上限值订购后就不能改变如容积式仪表和浮子式仪表等,差压式仪表孔板等设计确定后上下限流量不能改变,但可以调整差压变送器量程(或换差压变送器)以适应;有些仪表则不经实流校验用户可自行重新设定流量上限值,如某些型号的电磁流量计和超声流量计。
2.7 范围度
范围度为上限流量和下限流量的比值,其值愈大流量范围愈宽。线性仪表有较大范围度,一般为10:1;非线性仪表则较小,通常仅3:1,能满足一般过程控制用流量测量和商贸核算总量计量。但有些商贸核算用仪表要求较宽的范围度,例如公用事业水量出荷计量的昼夜和冬夏季节差很大,就要求很宽的范围度。若选用文丘利管差压式仪表就显得不能适应。然而差压式仪表范围度拓宽近年有一些突破,主要在差压变送器及微机技术应用方面采取措施,亦可达10:1。某些型号的电磁流量计用户可自行调整流量上限值,上限可调比(最大上限值和最小上限值之比)可达10:1,再乘上所设定上限值20:1的范围度,一台仪表扩展意义的范围度(即考虑上限可调比)可达(50-200):1,还有些型号仪表具有自动切换上限流量值功能。 有些制造厂为表示其范围度宽,把最大上限流负的流速提得很高,液体7-10m/s,气体50-75m/s,实际上这么高的流速一般是用不上的,关键是下限流速是否适应测量要求。一般要求范围度宽是使下限流速更低些才好。
2.8 压力损失
除无阻碍流量传感器(电磁式、超声式等)外,大部分流量传感器或要改变流动方向,或在流通通道中设置静止的或活动的检测元件,从而产生随流量而变的不能恢复的压力损失,其值有时高达数十kPa。首先应按管道系统泵送能力和仪表进口压力等条件,确定最大流量时容许的压力损失,据此选定仪表。因选择不当而产生过大的压力损失往往影响流程效率。管径大于500mm输水用仪表,应考虑压损所造成能量损耗勿使过大而增加泵送费用。
2.9 输出信号特性
输出信号往往左右仪表的选择。流量仪表的信号输出和显示归纳为:①流量(体积流量或质量流量);②总量;②平均流速;④点流速。有些仪表输出电流(或电压)模拟量,另一些输出脉冲量。模拟量输出一般认为适合于过程控制,易于和调节阀等控制回路单元接配;脉冲量输出适用于总量和高精度测量流量。长距离信号传输脉冲量输出比模拟量输出有较高传送准确度。输出信号的方式和幅值还应有与其它设备相适应的能力,如控制接口、数据记录器、报警装置、断路保护回路和数据传送系统等。
2.10 响应时间
应用于脉动流动场所应注意仪表对流动阶跃变化的响应。有些使用场所要求仪表输出跟随流动变化,而另一些为获得综合平均只要求有较慢响应的输出。瞬态响应常以时间常数或响应频率表示,其值前者从几毫秒到几秒,后者在数百赫兹以下,配用显示仪表可能相当大地延长响应时间。仪表的流量上升和下降动态响应不对称会急剧增加测量误差。
2.11 可维护性
当实际工况与设计选型差距巨大或仪表发生故障时,有没有手段就地维修和修正应该得到重视,因为流量仪表一旦安装再拆下维护会很麻烦而且需要时间。在这方面表现最好的是差压式测量方法,因为其与流体接触元件为免维护不动件,测量用电气元件为可拆可调的通用差压变送器。所以差压式测量方式的正常运转率最高,据统计在全球差压节流式测量方式占所有测量方式的45%以上。
2.12 标准及依据仪表性能选择因素数据表
精确度 (基本误差) 重复性误差 范围度 响应时间 (ms或s) (%R或%FS) 差压式 孔板 ±(1-2)FS (2) 3:1、15:1 (2) 喷嘴 ±(1-2)FS (2) 3:1、15:1 (2) 文丘利管 ±(1-2)FS (2) 3:1、15:1 (2) 弯管 ±5FS (2) 3:1 (2) 楔形管 ±(1.5-3)FS (2) 3:1 (2) 均速管 ±(2-5)FS (2) 3:1 (2) 浮子式 玻璃锥管 ±(1-4)FS ±(0.5-1)FS (5-10):1 无数据 金属锥管 ±(1-2.5)FS ±(0.5-1)FS (5-10):1 无数据 容积式 椭圆齿轮 液 ±(0.2-0.5)R ±(0.05-0.2)R 10:1 <0.5s 腰轮 10:1 <0.5s 刮板 气 ±(1-2.5)R ±(0.05-0.2)R (10-20):1 >0.5s 膜式 ±(2-3)R ±(0.05-0.01)R 100:1 >0.5s 涡轮式 液 ±(0.2-0.5)R ±(0.05-0.5)R (5-10):1 5-25ms 气 ±(1-1.5)R 电磁式 ±0.2R-±1.5FS ±0.1R-±0.2FS (10-100):1 >0.2s 旋涡式 涡街式 液 ±1R ±(0.1-1)R (5-40):1 >0.5s 气 ±2R 旋进式 ±(1-2)R ±(0.25-0.5)R (10-30):1 无数据 超声式 传播速度差法 ±1R-±5FS ±0.2R-±1FS (10-300):1 0.02-120s 多普勒法 ±5FS ±(0.5-1)FS (5-15):1 无数据 靶式 ±(1-5)FS 无数据 3:1 无数据 热式 ±(1.5-2.5)FS ±(0.2-0.5)FS 10:1 0.12-7s 科氏力质量式 ±(0.2-0.5)R ±(0.1-0.25)R (10-100):1 0.1-3600s 插入式(涡轮,电磁,涡街) ±(2.5-5)FS ±(0.2-1)R (10-40):1 (4) (2)取决于差压变送器的性能 目前只有节流式流量测量装置的生产、安装、使用具有国家和国际标准《GB/T2624-1993》和《ISO5167》,节流式流量测量装置被普遍用于贸易结算
|
|
|
|
评论仅代表评论人个人看法,不表明博客主人及中国工控网同意其观点或其描述 共2条评论 共1页 第1页
|
评论人署名:liu_336688 |
|
评论时间:2009/11/7 0:04:00 |
我要发表评论 |
|
评论人署名:小李 |
|
评论时间:2019/4/19 10:55:00 |
我要发表评论 |
小松的盾构机,加泥箱用的超声波液位传感器。显示液位不正确,还偶尔乱跳。不会手动设置,只有往传感器上面套一个水瓶,用了一段时间不管用了。后来换成开关的传感器,虽然不能显示液位只有开关信号,但是一直没坏用到隧道推完。谢谢楼主分享的文章。 |
|
相关技术论坛: |
|
相关技术论文: |
|
|